Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell ; 187(6): 1327-1334, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38490174

RESUMO

To build a just, equitable, and diverse academy, scientists and institutions must address systemic barriers that sex and gender minorities face. This Commentary summarizes (1) critical context informing the contemporary oppression of transgender people, (2) how this shapes extant research on sex and gender, and (3) actions to build an inclusive and rigorous academy for all.


Assuntos
Minorias Sexuais e de Gênero , Pessoas Transgênero , Masculino , Feminino , Humanos , Identidade de Gênero
2.
Front Microbiol ; 14: 1293966, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38075919

RESUMO

Introduction: MrpC, a member of the CRP/Fnr transcription factor superfamily, is necessary to induce and control the multicellular developmental program of the bacterium, Myxococcus xanthus. During development, certain cells in the population first swarm into haystack-shaped aggregates and then differentiate into environmentally resistant spores to form mature fruiting bodies (a specialized biofilm). mrpC transcriptional regulation is controlled by negative autoregulation (NAR). Methods: Wild type and mutant mrpC promoter regions were fused to a fluorescent reporter to examine effects on mrpC expression in the population and in single cells in situ. Phenotypic consequences of the mutant mrpC promoter were assayed by deep convolution neural network analysis of developmental movies, sporulation efficiency assays, and anti-MrpC immunoblot. In situ analysis of single cell MrpC levels in distinct populations were assayed with an MrpC-mNeonGreen reporter. Results: Disruption of MrpC binding sites within the mrpC promoter region led to increased and broadened distribution of mrpC expression levels between individual cells in the population. Expression of mrpC from the mutant promoter led to a striking phenotype in which cells lose synchronized transition from aggregation to sporulation. Instead, some cells abruptly exit aggregation centers and remain locked in a cohesive swarming state we termed developmental swarms, while the remaining cells transition to spores inside residual fruiting bodies. In situ examination of a fluorescent reporter for MrpC levels in developmental subpopulations demonstrated cells locked in the developmental swarms contained MrpC levels that do not reach the levels observed in fruiting bodies. Discussion: Increased cell-to-cell variation in mrpC expression upon disruption of MrpC binding sites within its promoter is consistent with NAR motifs functioning to reducing noise. Noise reduction may be key to synchronized transition of cells in the aggregation state to the sporulation state. We hypothesize a novel subpopulation of cells trapped as developmental swarms arise from intermediate levels of MrpC that are sufficient to promote aggregation but insufficient to trigger sporulation. Failure to transition to higher levels of MrpC necessary to induce sporulation may indicate cells in developmental swarms lack an additional positive feedback signal required to boost MrpC levels.

3.
PLoS Genet ; 19(11): e1011048, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37972151

RESUMO

The xenobiotic response element (XRE) family of transcription factors (TFs), which are commonly encoded by bacteria and bacteriophage, regulate diverse features of bacterial cell physiology and impact phage infection dynamics. Through a pangenome analysis of Caulobacter species isolated from soil and aquatic ecosystems, we uncovered an apparent radiation of a paralogous XRE TF gene cluster, several of which have established functions in the regulation of holdfast adhesin development and biofilm formation in C. crescentus. We further discovered related XRE TFs throughout the class Alphaproteobacteria and its phages, including the φCbK Caulophage, suggesting that members of this cluster impact host-phage interactions. Here we show that a closely related group of XRE transcription factors encoded by both C. crescentus and φCbK can physically interact and function to control the transcription of a common gene set, influencing processes including holdfast development and the production of φCbK virions. The φCbK-encoded XRE paralog, tgrL, is highly expressed at the earliest stages of infection and can directly inhibit transcription of host genes including hfiA, a potent holdfast inhibitor, and gafYZ, an activator of prophage-like gene transfer agents (GTAs). XRE proteins encoded from the C. crescentus chromosome also directly repress gafYZ transcription, revealing a functionally redundant set of host regulators that may protect against spurious production of GTA particles and inadvertent cell lysis. Deleting the C. crescentus XRE transcription factors reduced φCbK burst size, while overexpressing these host genes or φCbK tgrL rescued this burst defect. We conclude that this XRE TF gene cluster, shared by C. crescentus and φCbK, plays an important role in adhesion regulation under phage-free conditions, and influences host-phage dynamics during infection.


Assuntos
Bacteriófagos , Caulobacter crescentus , Caulobacter , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Bacteriófagos/genética , Caulobacter/genética , Caulobacter/metabolismo , Ecossistema , Xenobióticos/metabolismo , Caulobacter crescentus/metabolismo , Adesinas Bacterianas/genética , Elementos de Resposta
4.
J Bacteriol ; 205(10): e0018123, 2023 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-37791753

RESUMO

A suite of molecular sensory systems enables Caulobacter to control growth, development, and reproduction in response to levels of essential elements. The bacterial enhancer-binding protein (bEBP) NtrC and its cognate sensor histidine kinase, NtrB, are key regulators of nitrogen assimilation in many bacteria, but their roles in Caulobacter metabolism and development are not well defined. Notably, Caulobacter NtrC is an unconventional bEBP that lacks the σ54-interacting loop commonly known as the GAFTGA motif. Here we show that deletion of Caulobacter crescentus ntrC slows cell growth in complex medium and that ntrB and ntrC are essential when ammonium is the sole nitrogen source due to their requirement for glutamine synthetase expression. Random transposition of a conserved IS3-family mobile genetic element frequently rescued the growth defect of ntrC mutant strains by restoring transcription of the glnBA operon, revealing a possible role for IS3 transposition in shaping the evolution of Caulobacter populations during nutrient limitation. We further identified dozens of direct NtrC-binding sites on the C. crescentus chromosome, with a large fraction located near genes involved in polysaccharide biosynthesis. The majority of binding sites align with those of the essential nucleoid-associated protein, GapR, or the cell cycle regulator, MucR1. NtrC is therefore predicted to directly impact the regulation of cell cycle and cell development. Indeed, loss of NtrC function led to elongated polar stalks and elevated synthesis of cell envelope polysaccharides. This study establishes regulatory connections between NtrC, nitrogen metabolism, polar morphogenesis, and envelope polysaccharide synthesis in Caulobacter. IMPORTANCE Bacteria balance cellular processes with the availability of nutrients in their environment. The NtrB-NtrC two-component signaling system is responsible for controlling nitrogen assimilation in many bacteria. We have characterized the effect of ntrB and ntrC deletion on Caulobacter growth and development and uncovered a role for spontaneous IS element transposition in the rescue of transcriptional and nutritional deficiencies caused by ntrC mutation. We further defined the regulon of Caulobacter NtrC, a bacterial enhancer-binding protein, and demonstrate that it shares specific binding sites with essential proteins involved in cell cycle regulation and chromosome organization. Our work provides a comprehensive view of transcriptional regulation mediated by a distinctive NtrC protein, establishing its connection to nitrogen assimilation and developmental processes in Caulobacter.


Assuntos
Caulobacter , Sequência de Bases , Caulobacter/genética , Nitrogênio/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Ligação a DNA/metabolismo , Polissacarídeos , Regulação Bacteriana da Expressão Gênica , Proteínas PII Reguladoras de Nitrogênio/genética , Proteínas PII Reguladoras de Nitrogênio/metabolismo
5.
bioRxiv ; 2023 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-37645952

RESUMO

Upon infection, transcriptional shifts in both a host bacterium and its invading phage determine host and viral fitness. The xenobiotic response element (XRE) family of transcription factors (TFs), which are commonly encoded by bacteria and phages, regulate diverse features of bacterial cell physiology and impact phage infection dynamics. Through a pangenome analysis of Caulobacter species isolated from soil and aquatic ecosystems, we uncovered an apparent radiation of a paralogous XRE TF gene cluster, several of which have established functions in the regulation of holdfast adhesin development and biofilm formation in C. crescentus. We further discovered related XRE TFs across the class Alphaproteobacteria and its phages, including the φCbK Caulophage, suggesting that members of this gene cluster impact host-phage interactions. Here we show that that a closely related group of XRE proteins, encoded by both C. crescentus and φCbK, can form heteromeric associations and control the transcription of a common gene set, influencing processes including holdfast development and the production of φCbK virions. The φCbK XRE paralog, tgrL, is highly expressed at the earliest stages of infection and can directly repress transcription of hfiA, a potent holdfast inhibitor, and gafYZ, a transcriptional activator of prophage-like gene transfer agents (GTAs) encoded on the C. crescentus chromosome. XRE proteins encoded from the C. crescentus chromosome also directly repress gafYZ transcription, revealing a functionally redundant set of host regulators that may protect against spurious production of GTA particles and inadvertent cell lysis. Deleting host XRE transcription factors reduced φCbK burst size, while overexpressing these genes or φCbK tgrL rescued this burst defect. We conclude that an XRE TF gene cluster, shared by C. crescentus and φCbK, plays an important role in adhesion regulation under phage-free conditions, and influences host-phage dynamics during infection.

6.
bioRxiv ; 2023 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-37333394

RESUMO

A suite of molecular sensory systems enables Caulobacter to control growth, development, and reproduction in response to levels of essential elements. The bacterial enhancer binding protein (bEBP) NtrC, and its cognate sensor histidine kinase NtrB, are key regulators of nitrogen assimilation in many bacteria, but their roles in Caulobacter metabolism and development are not well defined. Notably, Caulobacter NtrC is an unconventional bEBP that lacks the σ54-interacting loop commonly known as the GAFTGA motif. Here we show that deletion of C. crescentus ntrC slows cell growth in complex medium, and that ntrB and ntrC are essential when ammonium is the sole nitrogen source due to their requirement for glutamine synthetase (glnA) expression. Random transposition of a conserved IS3-family mobile genetic element frequently rescued the growth defect of ntrC mutant strains by restoring transcription of the glnBA operon, revealing a possible role for IS3 transposition in shaping the evolution of Caulobacter populations during nutrient limitation. We further identified dozens of direct NtrC binding sites on the C. crescentus chromosome, with a large fraction located near genes involved in polysaccharide biosynthesis. The majority of binding sites align with those of the essential nucleoid associated protein, GapR, or the cell cycle regulator, MucR1. NtrC is therefore predicted to directly impact the regulation of cell cycle and cell development. Indeed, loss of NtrC function led to elongated polar stalks and elevated synthesis of cell envelope polysaccharides. This study establishes regulatory connections between NtrC, nitrogen metabolism, polar morphogenesis, and envelope polysaccharide synthesis in Caulobacter .

7.
PLoS Genet ; 18(10): e1010481, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36315598

RESUMO

Alphaproteobacteria commonly produce an adhesin that is anchored to the exterior of the envelope at one cell pole. In Caulobacter crescentus this adhesin, known as the holdfast, facilitates attachment to solid surfaces and cell partitioning to air-liquid interfaces. An ensemble of two-component signal transduction (TCS) proteins controls C. crescentus holdfast biogenesis by indirectly regulating expression of HfiA, a potent inhibitor of holdfast synthesis. We performed a genetic selection to discover direct hfiA regulators that function downstream of the adhesion TCS system and identified rtrC, a hypothetical gene. rtrC transcription is directly activated by the adhesion TCS regulator, SpdR. Though its primary structure bears no resemblance to any defined protein family, RtrC binds and regulates dozens of sites on the C. crescentus chromosome via a pseudo-palindromic sequence. Among these binding sites is the hfiA promoter, where RtrC functions to directly repress transcription and thereby activate holdfast development. Either RtrC or SpdR can directly activate transcription of a second hfiA repressor, rtrB. Thus, environmental regulation of hfiA transcription by the adhesion TCS system is subject to control by an OR-gated type I coherent feedforward loop; these regulatory motifs are known to buffer gene expression against fluctuations in regulating signals. We have further assessed the functional role of rtrC in holdfast-dependent processes, including surface adherence to a cellulosic substrate and formation of pellicle biofilms at air-liquid interfaces. Strains harboring insertional mutations in rtrC have a diminished adhesion profile in a competitive cheesecloth binding assay and a reduced capacity to colonize pellicle biofilms in select media conditions. Our results add to an emerging understanding of the regulatory topology and molecular components of a complex bacterial cell adhesion control system.


Assuntos
Caulobacter crescentus , Caulobacter , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Regulação Bacteriana da Expressão Gênica , Caulobacter/metabolismo , Adesinas Bacterianas/genética , Adesinas Bacterianas/metabolismo , Caulobacter crescentus/metabolismo , Aderência Bacteriana/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
8.
Sci Rep ; 11(1): 9505, 2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-33947929

RESUMO

This work compares the electrochemical impedance response of polished and unpolished boron doped diamond (BDD) electrodes, during mercury detection measurements. For each substrate type both bare electrodes and electrodes decorated with average diameter 30 nm AuNPs were used, to investigate the role of AuNPs during mercury sensing with diamond electrodes. In square wave anodic stripping voltammetry (SWASV) measurements for mercury detection, the mercury ions in the electrolyte are deposited onto, then stripped from the diamond electrode surface. To investigate the different electrode performances during these steps, the EIS measurements were made at the deposition and stripping potentials, alongside scans at open circuit potential for comparison. The performance of the electrodes is assessed in terms of their electron transfer rate (k0). The electrodes decorated with AuNPs are shown to have lower capacitance and higher reactivity than the bare pBDD and BDD electrodes, until the mercury concentration in the electrolyte is < 500 µM, when the sp2/sp3 carbon ratio at the surface of the electrodes has a greater influence on the sensitivity for mercury detection than the presence of AuNPs.

9.
Sci Rep ; 10(1): 15707, 2020 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-32973196

RESUMO

This work compares the electrochemical windows of polished and unpolished boron doped diamond (BDD) electrodes with hydrogen and oxygen terminations at a series of temperatures up to 125 °C. The experiment was run at 5 bar pressure to avoid complications due to bubble formation. An alternative method for determining the electrochemical window is compared to the most commonly used method, which defines the window at an arbitrary current density cut-off (Jcut-off) value. This arbitrary method is heavily influenced by the mass transport of the electrolyte and cannot be used to compare electrodes across literature where different Jcut-off values have been used. A linear fit method is described which is less affected by the experimental conditions in a given measurement system. This enables a more accurate comparison of the relative electrochemical window from various diamond electrode types from reported results. Through comparison of polished and unpolished BDD electrodes, with hydrogen and oxygen surface terminations, it is determined that the electrochemical window of BDD electrodes narrows as temperature increases; activation energies are reported.

10.
Angew Chem Int Ed Engl ; 58(46): 16583-16589, 2019 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-31364249

RESUMO

Single-molecule junctions that are sensitive to compression or elongation are an emerging class of nanoelectromechanical systems (NEMS). Although the molecule-electrode interface can be engineered to impart such functionality, most studies to date rely on poorly defined interactions. We focused on this issue by synthesizing molecular wires designed to have chemically defined hemilabile contacts based on (methylthio)thiophene moieties. We measured their conductance as a function of junction size and observed conductance changes of up to two orders of magnitude as junctions were compressed and stretched. Localised interactions between weakly coordinating thienyl sulfurs and the electrodes are responsible for the observed effect and allow reversible monodentate⇄bidentate contact transitions as the junction is modulated in size. We observed an up to ≈100-fold sensitivity boost of the (methylthio)thiophene-terminated molecular wire compared with its non-hemilabile (methylthio)benzene counterpart and demonstrate a previously unexplored application of hemilabile ligands to molecular electronics.

11.
Mol Microbiol ; 112(5): 1531-1551, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31449700

RESUMO

The Crp/Fnr family of transcriptional regulators play central roles in transcriptional control of diverse physiological responses, and are activated by a surprising diversity of mechanisms. MrpC is a Crp/Fnr homolog that controls the Myxococcus xanthus developmental program. A long-standing model proposed that MrpC activity is controlled by the Pkn8/Pkn14 serine/threonine kinase cascade, which phosphorylates MrpC on threonine residue(s) located in its extreme amino-terminus. In this study, we demonstrate that a stretch of consecutive threonine and serine residues, T21 T22 S23 S24, is necessary for MrpC activity by promoting efficient DNA binding. Mass spectrometry analysis indicated the TTSS motif is not directly phosphorylated by Pkn14 in vitro but is necessary for efficient Pkn14-dependent phosphorylation on several residues in the remainder of the protein. In an important correction to a long-standing model, we show Pkn8 and Pkn14 kinase activities do not play obvious roles in controlling MrpC activity in wild-type M. xanthus under laboratory conditions. Instead, we propose Pkn14 modulates MrpC DNA binding in response to unknown environmental conditions. Interestingly, substitutions in the TTSS motif caused developmental defects that varied between biological replicates, revealing that MrpC plays a role in promoting a robust developmental phenotype.


Assuntos
Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica/genética , Myxococcus xanthus/crescimento & desenvolvimento , Myxococcus xanthus/genética , Fatores de Transcrição/genética , Sequência de Aminoácidos/genética , Proteínas de Bactérias/metabolismo , Proteínas de Ligação a DNA/genética , Escherichia coli/metabolismo , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , Serina/genética , Transdução de Sinais/genética , Treonina/genética , Transcrição Gênica/genética
12.
Chem Sci ; 10(8): 2396-2403, 2019 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-30881668

RESUMO

Interference features in the transmission spectra can dominate charge transport in metal-molecule-metal junctions when they occur close to the contact Fermi energy (E F). Here, we show that by forming a charge-transfer complex with tetracyanoethylene (TCNE) we can introduce new constructive interference features in the transmission profile of electron-rich, thiophene-based molecular wires that almost coincide with E F. Complexation can result in a large enhancement of junction conductance, with very efficient charge transport even at relatively large molecular lengths. For instance, we report a conductance of 10-3 G 0 (∼78 nS) for the ∼2 nm long α-quaterthiophene:TCNE complex, almost two orders of magnitude higher than the conductance of the bare molecular wire. As the conductance of the complexes is remarkably independent of features such as the molecular backbone and the nature of the contacts to the electrodes, our results strongly suggest that the interference features are consistently pinned near to the Fermi energy of the metallic leads. Theoretical studies indicate that the semi-occupied nature of the charge-transfer orbital is not only important in giving rise to the latter effect, but also could result in spin-dependent transport for the charge-transfer complexes. These results therefore present a simple yet effective way to increase charge transport efficiency in long and poorly conductive molecular wires, with important repercussions in single-entity thermoelectronics and spintronics.

13.
Mol Microbiol ; 109(2): 245-261, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29745442

RESUMO

MrpC, a member of the CRP/Fnr superfamily of transcriptional regulators, plays a key role in coordination of the multicellular developmental program in Myxococcus xanthus. Previous reports suggest MrpC is subject to complex regulation including activation by an unusual LonD-dependent proteolytic processing event that removes its unique N-terminal peptide, producing the isoform MrpC2. MrpC2 is proposed to positively autoregulate and regulate transcription of hundreds of genes necessary for both the aggregation and sporulation phases of the developmental program. We demonstrate here that mrpC expression bifurcates corresponding to different cell populations within the developmental program. During our analysis of regulatory events controlling this process, we demonstrate that MrpC2 is not an active isoform; rather, the N-terminal peptide is instead essential for MrpC function in vivo. We also demonstrate that MrpC is instead a negative autoregulator and represses its own expression by specifically competing with its enhancer binding protein, MrpB. These results provide an additional rare example of CRP/EBP coordinated regulation, and significantly revise the model for control of the central developmental transcriptional activator of the M. xanthus developmental program.

14.
Cell ; 162(5): 1127-39, 2015 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-26279190

RESUMO

The peripheral nervous system has remarkable regenerative capacities in that it can repair a fully cut nerve. This requires Schwann cells to migrate collectively to guide regrowing axons across a 'bridge' of new tissue, which forms to reconnect a severed nerve. Here we show that blood vessels direct the migrating cords of Schwann cells. This multicellular process is initiated by hypoxia, selectively sensed by macrophages within the bridge, which via VEGF-A secretion induce a polarized vasculature that relieves the hypoxia. Schwann cells then use the blood vessels as "tracks" to cross the bridge taking regrowing axons with them. Importantly, disrupting the organization of the newly formed blood vessels in vivo, either by inhibiting the angiogenic signal or by re-orienting them, compromises Schwann cell directionality resulting in defective nerve repair. This study provides important insights into how the choreography of multiple cell-types is required for the regeneration of an adult tissue.


Assuntos
Vasos Sanguíneos/metabolismo , Macrófagos/metabolismo , Nervos Periféricos/fisiologia , Células de Schwann/metabolismo , Animais , Axônios/metabolismo , Hipóxia Celular , Células Endoteliais/metabolismo , Inflamação/metabolismo , Masculino , Camundongos , Neovascularização Fisiológica , Ratos , Ratos Sprague-Dawley , Regeneração , Fator A de Crescimento do Endotélio Vascular/genética
15.
Expert Opin Drug Saf ; 14(3): 429-37, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25553607

RESUMO

INTRODUCTION: Tocilizumab (TCZ), a humanized anti-IL-6 receptor (IL-6R) monoclonal antibody, has demonstrated efficacy and tolerability in several large randomized, controlled trials for the treatment of rheumatoid arthritis (RA). AREAS COVERED: This article compares the safety profile of the newer, subcutaneous (SC) formulation of TCZ with the original intravenous (IV) formulation, in combination with traditional disease-modifying antirheumatic drugs (DMARDs) in patients with RA. Several pivotal clinical trials are included, highlighting data from: i) trials of TCZ-IV; ii) trials of TCZ-SC; and iii) trials comparing IV to SC TCZ. TCZ use in pediatric populations is beyond the scope of this review. EXPERT OPINION: The efficacy and safety of TCZ-IV in the treatment of RA has been demonstrated in multiple clinical trials, both as monotherapy and in combination with traditional DMARDs. The data for TCZ-SC is similar, albeit with a higher frequency of injection site reactions (ISRs). With careful patient selection, the benefit: risk ratio is favorable, offering patients a rapid and sustained reduction in disease activity, improved function and reduced structural damage. Given that most patients prefer SC to IV medication, TCZ-SC will likely become a mainstay, along with other biologic agents, for the treatment of RA patients who have failed traditional non-biologic DMARDs.


Assuntos
Anticorpos Monoclonais Humanizados/administração & dosagem , Antirreumáticos/administração & dosagem , Artrite Reumatoide/tratamento farmacológico , Anticorpos Monoclonais Humanizados/efeitos adversos , Anticorpos Monoclonais Humanizados/uso terapêutico , Antirreumáticos/efeitos adversos , Antirreumáticos/uso terapêutico , Quimioterapia Combinada , Humanos , Infusões Intravenosas , Injeções Subcutâneas , Ensaios Clínicos Controlados Aleatórios como Assunto , Receptores de Interleucina-6/imunologia
16.
Practitioner ; 258(1777): 21-4, 3, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25603589

RESUMO

Psoriatic arthritis (PsA) is a chronic, autoimmune disease, affecting up to 1% of the adult population and up to 40% of those with psoriasis. There is no universally accepted definition or diagnostic criteria for the disease although the CASPAR classification of PsA is now the most widely used. PsA has a peak age of onset between 35 and 55 years with an equal gender distribution. Around 20% of patients develop PsA before psoriasis, often many years before skin or nail changes. Enthesitis, pain and tenderness at the insertion of any tendon onto the bone, is characteristic and screening for enthesitis should include palpation of the lateral epicondyle of the humerus, the medial condyle of the femur and the achilles tendon insertion. Diagnosis of PsA relies on a detailed history, particularly as many of the manifestations may be mild or transient, and therefore not reported by the patient. There may be a previous, current, or family history of psoriasis. There are no diagnostic blood tests for PsA. The presence of rheumatoid factor or anti-CCP antibodies does not preclude a diagnosis of PsA, but should prompt careful scrutiny of the diagnosis. X-rays of the hands and feet should be performed at baseline for all those with suspected inflammatory arthritis. Features of back pain that suggest an inflammatory cause, rather than a mechanical problem, include the presence of early morning stiffness and pain that is relieved by exercise and exacerbated by rest. Any patient with suspected inflammatory arthritis and a six-week history of painful, swollen joints should be referred for specialist assessment. Patients with PsA have a higher self-rated disease severity than those with psoriasis only and a 60% higher risk of premature mortality than the general population, their life expectancy is estimated to be approximately three years shorter. Aggressive treatment of early stage progressive PsA can substantially improve the long-term prognosis.


Assuntos
Anti-Inflamatórios não Esteroides/uso terapêutico , Artrite Psoriásica , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Adulto , Idade de Início , Idoso , Antirreumáticos/uso terapêutico , Artrite Psoriásica/complicações , Artrite Psoriásica/diagnóstico , Artrite Psoriásica/epidemiologia , Artrite Psoriásica/fisiopatologia , Artrografia/métodos , Dor nas Costas/diagnóstico , Dor nas Costas/etiologia , Diagnóstico Diferencial , Diagnóstico Precoce , Feminino , Humanos , Masculino , Anamnese/métodos , Exame Físico/métodos , Prognóstico , Tendinopatia/diagnóstico , Tendinopatia/etiologia , Tempo para o Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...